Context Quadratics WS \#2

Fenced on three sides:

For problem \#1, a builder is designing a rectangular parking lot. She has 200 feet of fencing to enclose the lot on three sides. Fill in the table for different values of w, then write a final function $A(w)$ for the area of the lot as a function of the width, w. For problems 2-4, you only need to write the function for $A(w)$ when given the amount of fencing available.
1)
2) 120 feet of fencing.

Width (ft)	Length (ft)	Area (ft)
20		
50		
60		
75		
w		

$A(w)=$
3) 500 feet of fencing
4) 60 feet of fencing

For problems 5-7, you are given the initial velocity and initial height of a projectile. Write a function $h(t)$ for the height of the object after t seconds.
5) initial height $=60$ feet initial velocity $=85 \mathrm{ft} / \mathrm{sec}$
6) initial velocity $=25 \mathrm{ft} / \mathrm{sec}$ initial height $=80$ feet
7) initial height = 100 feet initial velocity $=120 \mathrm{ft} / \mathrm{sec}$

Fenced on four sides:
For problem \#9, a builder is designing a rectangular parking lot. She has 200 feet of fencing to enclose the lot on all four sides. Fill in the table for different values of w, then write a final function $A(w)$ for the area of the lot as a function of the width, w. For problems 10-12, you only need to write the function for $A(w)$ when given the amount of fencing available.
9)

Width (ft)	Length (ft)	Area (ft)
20		
50		
60		
75		
w		

$A(w)=$
11) 500 feet of fencing
10) 120 feet of fencing.
12) 60 feet of fencing

