Kay

Context Quadratics WS #2

Fenced on three sides:

For problem #1, a builder is designing a rectangular parking lot. She has 200 feet of fencing to enclose the lot on three sides. Fill in the table for different values of w, then write a final function A(w) for the area of the lot as a function of the width, w. For problems 2-4, you only need to write the function for A(w) when given the amount of fencing available.

1)

Width (ft)	Length (ft)	Area (ft)
20	160	20(160)
50	100	5001001
60	80	60CD)
75	50	75(50)
W	200-200	w(200-2w)

2) 120 feet of fencing.

A(W) = W(200-2W)

3) 500 feet of fencing

4) 60 feet of fencing

For problems 5 – 7, you are given the initial velocity and initial height of a projectile. Write a function h(t) for the height of the object after t seconds.

- 5) initial height = 60 feet initial velocity = 85 ft/sec
- 6) initial velocity = 25 ft/sec initial height = 80 feet
- 7) initial height = 100 feet initial velocity = 120 ft/sec

h(t)=-16t2+85t+60

h(t)=-16t2+120t+100

n(t)=-16t2+25t+80

Fenced on four sides:

#9

For problem #8, a builder is designing a rectangular parking lot. She has 200 feet of fencing to enclose the lot on all four sides. Fill in the table for different values of w, then write a final function A(w) for the area of the lot as a function of the width, w. For problems 10 - 12, you only need to write the function for A(w) when given the amount of fencing available.

9)

Width (ft) Len	gth (ft)	Area (ft)
20	8	0	26(80)
50	5	0	50(50)
60) 4	D	60(40)
75	5 2	5	75(25)
W	100	D-W	Woow)

11) 500 feet of fencing

10) 120 feet of fencing.

12) 60 feet of fencing

A(w)= w(30-w)