Module 1, Topic 2 DCA Review (A.APR.B)

1) Consider the function $f(x)=x^{2}-1$. Dilate $f(x)$ by $x+3$ to create a new function of higher degree.
a) Write the dilation of $f(x)$ as $g(x)$. [Note: You
b) Sketch the graph of $\mathrm{g}(\mathrm{x})$. may leave this one in factored form\}
c) Identify the zeros of the graph of the function of $\mathrm{g}(\mathrm{x})$.

2) Describe the end behavior of each function.
a) $r(x)=-5 x^{10}+2 x^{6}-12 x-13 \quad$ b) $h(x)=x^{7}+4 x^{5}-9 x^{3}+2$
3) $f(x)=x^{2}$ has been transformed into $g(x)=-2(x+4)^{2}+8$. Describe the transformations that map $f(x)$ onto $g(x)$.

Module 1, Topic 2 DCA Review (A.APR.B), page 2

4) Sketch the basic shape of each function.
a)

-
-
- a is positive with degree 5
-
one zero has a multiplicity of one,
and two zeros have a multiplicity of
two.

b) \qquad

Exemplary - If you are already Meeting on the rest of the assessment.

5)

a) Write a new function, $g(x)$, that is a product of the functions shown. [Note: You may not leave this one in factored form]. Show your work!

